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Resonance Measurement of Single- and Coupled-
Microstrip Propagation Constants

VITTORIO RIZZOLI

Abstract-The application of resonant techniques to the measurement

of microstrip-line propagation constants is described. A review of the
basic theory is given first, showing the great generality of the underlying

principle. Then the particular case of a transmission line is discussed and
it is shown that excellent theoretical accuracy can be achieved despite
the simplicity of the procedure and the mathematics involved. Both the
cases of nondispersive and dispersive propagation are covered. Finally,
it is shown that the basic method can be extended to the case of sym-

metrical coupled lines in a straightforward way. Some results concerning

practical microstrip lines are presented and compared with theoretical

data.

I. INTRODUCTION

R
ESONANT techniques are very popular among

microwave engineers, as is shown by the considerable

number of papers dealing with this subject that have been

reported in literature. Though originally devoted to wave-

guide measurement (see, for example, [1]-[3]), these

techniques have been successfully extended to the field of

microwave integrated circuits [4]–[7]. In the latter case,

many parameters of interest such as microstrip propagation

constants, attenuation factors, and discontinuity equivalent

circuits can be measured provided that resonators be suitably

shaped and excited. In fact, the widle range of application

seems to be one of the most attractive features of this kind

of technique, the others being measurement simplicity

and accuracy, easy automation, and insensitivity to such

classical inconveniences of microstrip measurements as

coaxial-to-microstrip transition effects.

This paper is concerned with propagation-constant

measurement on single- and coupled-microstrip lines (or

transmission lines in general). The theory of resonance

measurement on one-port networks is reviewed in Section

II in such a way that the extreme generality cjf the basic

concept is emphasized. In Section III the application to

measurement of single transmission-line propagation con-

stants is discussed with the twofold aim of establishing the

theoretical merits and limitations of the method and bring-

ing into sharper focus some aspects that have been only

partly covered so far. In Section IV it is shown that the

measurement of the normal (i.e., even and odd) -mode

propagation constants in a pair of symmetrical coupled

transmission lines can always be reduced to a~couple of

independent single-transmission-line measurements. Inter-

actions between different but nearby resonances are avoided
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Fig. 1. Basic resonant configuration.

this way and both modes are measured with the same

absolute accuracy as obtained in the single-line case.

Finally, in Section V a few experimental results are presented

and compared with theoretical data in order to get a feeling

of the kind of accuracy that can be expected from currently

available analytical techniques in predicting microstrip

behavior.

In any case reference is made to shielded line resonators,

since this configuration has been shown [6] to be most

suitable for obtaining accurate and well defined measure-

ments and simply allows the even- and odd-mode resonances

in the coupled case to be produced separately [9].

IL RESONANCEMEASUREMENT OF ONE-PORT NETWORKS

The basic circuit configuration to be considered is shown

in Fig. 1. The 10SSY one-port network under test X is

coupled to the outside world by means of a lossless reciprocal

two-port %?,and the reflection coefficient p of the resulting

one-port is measured with respect to some reference

impedance R (typically, the characteristic impedance of a

network-analyzer system). The reference impedance at the

inner port of the coupling network is denoted by Z=

(usually ZC # R). Let the normalized driving point ad-

mittance of X be denoted by

l–pL
YL=l+PL (1)

and the scattering matrix of% by

[1
s = ’11 ’12 .

s~~ S22

(2)

Then, the expression for the input reflection coefficient is

given by. the well-known formula

P = sll + ‘122~L .

1 – s22pL
(3)

By means of (1) and a few algebraic manipulations, (3)
can be given in the following form:

A – Sll
YL –

A+sll A+sll
p= .—

~L+l–s22 l+s~z
(4)

1 + S22
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where A = det S. Now, since (2) is the scattering matrix

of a loss-free network, from the conditions for absence of

loss we obtain

s~~ = u exp [ –j~]

S22 = u exp [ –j*]

“2= *’{(1-U’)ex d-’% “)

where u,#,tj are real numbers and O < u < 1. Note that

in this case we have A = exp [ –j(~ + ~)], so that (4)

becomes

~ = ~. -’a -%x P[@l

yL+a–jb
(6)

with

1 — u’
a=

l+u’+2ucoslJ

b=
– 2U sin +

l+zJ2+2ucos~

ti=-~+$-2 arctan
sin *

(7)
U+coslj”

Finally, if the real and imaginary parts of y~ are put into

evidence, namely, y~ = x + jy, (6) takes the form

p= - exp [j$j (8)

where

x–a
ro=—

x+a

~=y–b— . (9)
x+a

Equation (8) is the expression for the reflection coefficient

that will be referred to in the rest of the paper.

Let us now assume that the network % provides small

coupling between its input and output ports, that is,

1–U2 <<1. (10)

In the limiting case u = 1, (5) yields S12 = O, so that

Ipl = ISI,1 = 1 independent of frequency. Thus when (10)

holds, the magnitude of the input reflection coefficient will

generally be very close to 1, except in the vicinity of those

frequencies (if any) such that the following conditions be

satisfied:

Itl<<1

Irol cc 1. (11)

In fact, (11) implies Ipl <<1. These frequencies will be

referred to as resonant frequencies. Thus we may state that

one such frequency is characterized by a resonant dip

occurring in the magnitude-of-p-versus-frequency plot.

The optimum theoretical case (usually not practically

realizable) is achieved when

t=o

r. = O. (12)

In this case the network% is said to provide .critical coupling.

To verify (12) or—from a more realistic standpoint—(1 1),

a degree of freedom should usually be available in the

circuit. Typically, this can be obtained by means of a

coupling network containing at least one variable parameter.

If r. and 6 were constants, (8) would represent a circle on the

Smith chart, having its center at

-+-Qexp [ j~]. (13)

Now in most practical cases it is found that the input

reflection coefficient actually depicts a circle (or, at least, a

fraction of it) on the Smith chart in the vicinity of every

resonant frequency (see [7], [8]) provided that the reference

plane be properly chosen. Referring to (8), this means that

in the vicinity of a resonant frequency co, the rate of change

of r. and 6 with frequency is usually negligible if compared

to that of t.Thus for co near to co, from (8) we get the

following approximate expression:

‘do.) + “iq(o – ‘.)p(co) E
1 + jq(co – co,)

exp [jd] (14)

where

(15)

In turn, (15) suggests the following expression for the loaded

Q of the resonant one-port [9]:

(16)

Note that when (12) hold, Q~ is the inverse of the

fractional 3-dB bandwidth so that by monitoring Ipl

versus frequency on a CRT display Q~ can easily be

measured, Of course, the resonant frequency co, can be

measured quite as easily, since a sharp minimum of 1P!

occurs at this frequency. Thus(12) and(16) maybe regarded

as a system of three equations which make it possible

to find up to three unknown parameters of the one-port

network under measurement. When the network topology

is known a priori on a physical ground, the unknown
quantities may obviously be chosen as physically significant

ones. Otherwise, they are best chosen to be electrical

parameters of some lumped or distributed equivalent circuit.

An example of the former situation will be given in the

following section, where the case of a short-circuited

transmission line is worked out in some detail.

III. PROPAGATION-CONSTANT MEASUREMENT

IN A TRANSMISSIONLINE

Let the network X (Fig. 1) be a short-circuited trans-

mission-line section of given length 1. The line characteristic

impedance (which is the same as the output reference
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impedance) is denoted by ZC and the unknown propagation

constant by y = a + j~. If this is the case, the normalized

load admittance is given by y~ = coth yl, and

sinh 2LX1x=
cosh 2cd – COS%1

– sin 2/31y= (17)
cosh 2cd – COS%1 “

If an ideal admittance inverter of constant BO is used as the

coupling network %, then

~ = 1 – B02ZCR

1 + B02ZCli

(p=$=() (18)

so that an easily realizable condition for small coupling is

B02ZCR f< 1. Moreover, from (7) we get

a = B02ZCR << 1

b= b=O. (19)

As a consequence, the condition t =: O is met at all fre-

quencies such that cos 2~1 = ~ 1. When the upper sign

holds, x = coth od, which is usually much greater than 1

since all the transmission lines we are interested in are low-

10SS.At these frequencies the magnitude of p is then nearly

equal to 1 and no resonance is found. Thus resonances

may only occur at frequencies such that the line length is

an odd multiple of a quarter of a wavelength, that is,

oJ. =;(2K+l)z
2

(20)

where K is an integer and VP is the phase velocity of the

transmission line. At all frequencies defined by (20), the

input reflection coefficient is given by

tanh al – B02ZCR
p(ro.) = r~ =

tanh cd + BOZCR
(21)

and a resonant dip may actually occur provided that the

inverter constant B. is properly adjusted. This is the degree

of freedom required to perform the measurement in the

particular case being considered.

Finally, from (16) by means of (15), (9), and (17) the

following expression for the loaded cavity Q is

Q. = ~ (1 – tanh2 @(2X + l)z

v~ 4(tanh cd + B02ZCR)

where

am

“=~

derived:

(22)

(23)

is the group velocity of the transmission line. Equations

(20), (21), and (22) can be rearranged to obtain the fun-

damental equations for the measurement procedure:

2WJ

‘p = (2K + l)rc

tanh al = <(Y2 + I)t – Y (24)

B02ZCR = 1 – tanh2 Ml – tanh Ml
(1 + r,)Y

IDEAL
lNVCRTER

-
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L

Fig. 2. Inverter-fed transmission-line resonant cavity.
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Fig. 3, Equivalent circuit of general lossless two-port.

where

y=%. 4Q~

v, (2K + l)n(l + ro)”
(25)

In (24), Q~, co,, and r. must be regarded as known

quantities. 1 The network topology for this case is schemat-

ically shown in Fig. 2.

At this stage, two different cases may arise. When

propagation in the line is nondispersive, then VP = v~

and (24) yield the phase velocity and attenuation constant

of the line without further complication. When dispersion

may not be neglected, further information is required to

find the group velocity. This can be obtained on a purely

experimental basis following the procedure outliined in the

Appendix.

Now consider the two-port network represented in Fig. 3,

made of two lossless transmission-line sections and an ideal

admittance inverter. It is well known that this network can

be used as an equivalent circuit for any loss-free two-port

at a given frequency. Consequently, in the vicinity of

every resonant frequency the real network may be de-

scribed by the ideal topology of Fig. 22 no matter what the

physical structure of the coupling network, provided that the

following conditions are fulfilled:

1) the coupling network is practically loss free;

2) the output electrical length of the coupling network is

negligible with respect to the electrical length of the

line resonator.

Note that the input electrical length of the coupling net-

work is of no interest here, since its effect can be easily

compensated for by a reference plane shift.

Thus the fundamental equations for the ideal case may be

used in the real situation as well, the only approximations

involved being specified by conditions 1) and 2) above. In

particular, it is expected that the relative error on VP will

be of the order of

*

(2K + l)z “
(26)

1 Note that (24) may be used even when lr~ \ is nonnegligible with
respect to unity. In this case the loaded Q is defined as the ratio
CO,/ACO,where &o is the difference between the two frequencies yielding
~~ <~ [~ + r.2)/2. The latter reduces to the 3-dB bandwidth if

2 At least. this is true within the 3-dB bandwidth. which is usually
very narrow’ (typically a few percent).
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Fig. 4. Example of microstrip-cavity excitation.
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Fig. 5. Equivalent circuit of coupling network.

!C

A very simple practical realization of the coupling

network—in fact, the one that was used to perform the

measurements presented in this paper—is schematically

shown in Fig. 4. The network essentially consists of an air

gap separating the output tab of an APC-7 RF connector

and the input section of the microstrip line. The coupling

can be made as small as needed by varying the gap. It is

evident on a physical ground that this kind of network

can be described by an equivalent circuit consisting of a

purely capacitive n-network as shown in Fig. 5. Cl and Cz

approximately account for the end effects of the coaxial

and microstrip lines.

Since a number of approximations are involved in the

above procedure, it is advisable to get some sort of feeling

of the overall theoretical accuracy that can be expected

from it. To this end, computer simulations were performed

in a number of particular cases.

The way a simulation works is as follows. An analytical

model of the microstrip resonator is assumed first, including

dispersion [10], frequency-dependent losses and parasitic.

All of these effects are taken into account by simple equa-

tions based on well-known theoretical or experimental data.

Reasonable values are then chosen for Cl and Cz in a

similar way [1 1], At this stage, a value of K (order of

resonance) is fixed and the corresponding resonance

frequency and critical coupling capacitance are found by

numerically solving (12). The resulting one-port is then

analyzed and the magnitude of the reflection coefficient is

plotted as a function of frequency. Finally, this plot is used
(in much the same way as if it was the trace on a CRT

display) to find the line propagation constant by the method

previously described and the results are compared with the

known true values,

Based on the data obtained this way, we can state that the

theoretical accuracy of the method is higher than 2.5 percent

in all cases of practical interest for a 5-cm-long resonator

within the band 1:18 GHz.

Dispersion must be taken into account as approaching

the upper end of this band. Increasing the resonator length

usually increases both the accuracy on VPand the error on a.

The case of an open-end resonator can be treated in a very

0 GO IJ PLED SECTION

/ ,/ .,/ /,///,’/,/. ////////// /, /..

GROUND

Fig. 6. Schematic of even-mode cavity.

similar way. The fundamental equations (24), (25) still

hold, provided that the factor (2K + 1) is replaced by 2K.

In this case the end effect of the microstrip line should be

taken into account in evaluating the phase velocity. How-

ever, for resonator lengths over 5 cm this effect is usually

less than a few units per thousand.

Finally, note that the effect of any circuit losses other

than the ones to be measured can easily be accounted for

by shifting the vertical position of the beam on the CRT

display in such a way that the out-of-resonance condition

lpl = 1 is restored. Then the measurement may be carried
out in the way discussed so far without further complication.

IV. RESONANCEMEASUREMENT OF EVEN- AND ODD-

MODE PROPAGATION CONSTANTSIN COUPLED MICROSTRIPS

The method outlined in the preceding sections, which is

suitable for single-transmission-line measurement, can be

used in the case of symmetrical coupled microstrips to

find the even- and odd-mode propagation constants. The

approach consists of feeding and loading a section of the

two-wire line to be measured in such a way that separate

resonant cavities for the even and odd mode be obtained.

The even- and odd-mode voltages and currents are defined

by the well-known relationships

L L

An even-mode resonant cavity can very easily be ob-

tained by connecting in parallel the strips at both ends of

the coupled section as shown in Fig. 6. In this way we

force the odd-mode voltage to be zero in both the input

and load sections of the two-wire line. Since the modes

are uncoupled in all other sections, the odd mode is not

excited at all. As a consequence, a transmission-line
resonator is obtained having the even-mode propagation

constant y~ and half the even-mode characteristic im-

pedance. The input coupling network is realized as shown

in Fig. 4 and an open-end configuration is chosen to

simplify construction. The resonator is enclosed in a

rectangular waveguide below cutoff in order to eliminate

any radiation effects.

To obtain an odd-mode resonant cavity, let us first

consider the electrical situation depicted in Fig. 7. The strips

are connected in parallel at the input side, and separately

loaded by the admittances Yl, Y2. This time the RF con-

nector is soldered to the center conductor, so that no input

admittance inverter exists. As shown in [9], the equivalent
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Fig. 7. Schematic of odd-mode cavity.

circuit of Fig. 7 in terms of even- and odd-mode lines is

the one given in Fig. 8. The two-port labeled Y~O becomes

an ideal admittance inverter of constant II. << 1 provided

that

Y1 = –jl?o

Y2 = jBO (28)

where B. is a small real number.

Due to the presence of a cascade section of the even-

mode line, the electrical situation of Fig. 8 is somewhat

more complicated than assumed in Section III, and must

be carefully examined.

What we would’ need in order to perform thle measure-

ment as described above is the reflection coefficient of the

odd-mode resonator with respect to the even-mode charac-

teristic impedance (this is denoted by p in Fig. 7). On the

other hand, what we are able to measure from the circuit

of Fig. 7 is

(29)

where R is the reference impedance and Zin is given by

z = z~ 1 + p exp [–2yJJ
in

1 – p exp [–27.1]
(30)

1 being the length of the coupled section.3

Now since the loaded Q of the cavity is usually high, and

we are essentially interested in the circuit behavior within

the narrow 3-dB bandwidth, the change of the factor y~l

with frequency throughout this band may be neglected.

Moreover, since the even mode is generally lCJWloss (see

Section V), the attenuation factor may be neglected, too,

or simply accounted for as was said at the end of Section III.

Thus the cascade even-mode line acts in much the same

way as an ideal phase shifter in the frequency band of

interest. If this is the case, it can be shown that a straight-

forward application of (24) to the measured reflection

3 In principle, a very simple way of exactly solving the problem
would be to make R = ZJ2 by inserting an impedance-matching
network between the microstrip circuit and the output connector of
the network-analyzer system. In fact, in this case from (29) and (30),
we get

Pi” = P exp [–2yBll

so that P can be derived from the measured data, since YE is known.
This approach, however, turns out to be unpractical because it re-
quires an independent determination of the even-mode characteristic
impedance and can be greatly perturbed b,y the imperfect behavior of
the matching network.

Fig. 8. Equivalent circuit in terms of even- and odd-mode transmission
lines.

\ (— .

/ / ///// /, /// ./
hROUND

Fig. 9. Final configuration of odd-mode cavity.

coefficient pi. (see Fig, 7) yields the correct value of the odd-

mode propagation constant in spite of the impedance step

occurring in the input section of the microstrip circuit.

The approximation error involved is typically 1 percent or

less in cases of practical interest. The proof of this state-

ment is not given here for the sake of brevity.

The only problem left is how to obtain the practical

realization of (28). An intuitive solution can readily be

found if we note that a small positive susceptance can be

made by a short (z 1./4) open-end transmission-line

section, while a small negative susceptance could be made

by a similar transmission-line section of negative length.

Thus all we need [9] is to lengthen one of the strips and

shorten the other by the same amount Al. The resulting

circuit configuration is schematically shown in Fig. 9. The

inverter constant is given by

B. = Y. tan j30Al, (31)

where YO and /30 are the characteristic admittance and

phase constant of the open-circuited stub loading line 2.’

In principle, the inverter constant can be adjusted by

changing the length Al, so that the required degree of

freedom is available.

Upon careful examination of the circuit in Fig. 9, it

becomes evident that the above intuitive argument is only

approximate. An exact equivalent circuit is actually given

by Fig. 8, where 1 must be replaced by 1 – Al and the
coupling network has the same topology as shown in Fig. 5.

This time the equal capacitances Cl = Cz account for the

microstrip open-circuit effect, while the coupling capacitance

CA has the expression

(32)
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Fig. 10. Fine tuning of odd-mode cavity.

—

Fig. 11. Picture of even- and odd-mode cavities.

Thus the electrical situation and the expected accuracy are

the same as that discussed in Section III for the single-line

case.

Finally, note that, in order to practically perform the

measurement, a fine tune of the inverter constant can be

realized as shown in Fig. 10. As in the previous case, the

resonator is enclosed in a rectangular waveguide below

cutoff, but now a step is etched in the sliorting block de-

limiting the waveguide cavity. The length of this step is the

same as for the stub loading line 2, and the height is such

that a very small air gap (e 0.1 mm) is left between the

strip conductor and the block itself. Thus changing the

axial position of the shorting block is equivalent to modify-

ing the load capacitance of line 2, that is, the inverter

constant.

V. EXPERIMENTAL RESULTS

In this section we present a few experimental results

that were obtained by the above procedure from the micro-

strip lines shown in Fig. 11. These were made by thin-

film technique on 99.5-percent alumina substrate (s, =

10.6) and had the following geometry:

strip width 0.5 mm
strip spacing 0.1 mm
substrate thickness 0.635 mm

The metal film was made of a 500-~ layer of NiCr plus

a 1200-A layer of gold (dc resistivity 2.7 ,u!2 ccm). The

latter was electrolytically grown to about 3 pm. The lengths

of the even- and odd-mode resonators were 5 and 4.3 cm,

respectively. Three samples of each resonator were made

from the same mask. Fig. 12 is a picture of the jig used to

perform the measurement. Also shown in the same figure is

the stepped short-circuiting block that was used in the odd-

mode case.

Fig. 12. Picture of jig used to perform measurements.

1,

81
6

2.00 3.00 4.00 5.00 6.00 ?. 00 8.00 9.’00 10.0 11.0 12.0

FREQUENCY (GHZ 1

Fig. 13. Sample experimental results.

The measured performances of both the even and odd

mode for all samples are reported altogether in Fig, 13.

For each resonant frequency, an interval rather than a single

measured point is given in the figure owing to the following

reasons:

1) the attenuation constants are not exactly the same for

the different resonators considered;

2) for each resonator there exists an uncertainty on the

value of the loaded ~, arising from the irregular

shape of the observed resonant dip.

On the other hand, practically no change of the resonant

frequencies was found from one resonator to another.

As is evident from the figure, measurement definition is

good, the maximum uncertainty being about + 6 percent

both for the even and odd mode. The continuous curves

were obtained by interpolating the midpoints of the un-

certainty intervals in the least square sense. The inter-

polating function was chosen as
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and the following values were found:

A = 0.027
even mode

x = 0.615

A = 0.066
odd mode

X = 0.546

where u is given in decibels per centimeter. Note that in

both cases the exponent is higher than the theoretical

0.5, probably due to the effect of surface roughness [13].

Also shown in the figure are the results of loss computa-

tion for the same two-strip system (dashed lines). These

may be expressed as

u = 0.0234~~ even mode ,

M = 0.0688J7 odld mode

where~is in gigahertz and the 1-GHz values were calculated

by the quasi-TEM analysis of [14]. h each case the agree-

ment is good at low frequencies, lbut deteriorates as fre-

quency is increased, due to the exponent difference. The

accuracy of the theoretical results is definitely better for the

odd than for the even mode, but no simple explanation was

found for this fact. Note that the calculations were per-

formed for smooth strips and substrates; the agreement

between theory and experiment could obviously be improved

by including a roughness factor as in [4].

From Fig. 13 the resonant frequencies are also apparent,

so that the even- and odd-mode phase velocities can be

computed. For the even mode a slight dispersion effect is

observed, since the phase velocity steadily decreases from

1.12 x 108 m/s (at 2 GHz) to 1.08 x 108 m/s (at 12 GHz),

For the odd mode, dispersion is insignificant over the

frequency range considered here, and the phase velocity

has a practically constant value of 1.24 x 108’ m/s. These

results are consistent with those reported in [1 !5].

For comparison, the velocity values obtained from the

variational analysis of [16] for the same strip dimensions

and zero thickness are

VP = 1.103 x 108 m/s even modle

VP = 1.241 x 108 m/s odd mode.

The maximum error of the quasi-TEM analysis on the even-

mode velocity is about 2 percent below 12 GHz, while the

odd-mode velocity is evaluated exactly.

Thus the quasi-TEM analysis seems adequate for charac-

terizing the even and odd modes of symmetrical coupled

microstrip lines up to 12 GHz, both for propagation

velocity and losses. This conclusion was further checked

by a number of measurements performed on rexolite

resonators by the same technique described above. In all

cases the results were qualitatively similar to those reported
in the present section.

VI. CONCLUSION

In the present paper the theory of resonance measure-

ments on lossy one-port networks has been formalized and

presented in a general and self-contained form, independent

of the physical nature of the particular circuit being con-

sidered. The basic equations to be used when measuring

transmission-line propagation constants have been shown

to be a simple and natural consequence of the general ones,

for the special case of a network consisting of a short- or

open-circuited transmission-line section.

Application of the general considerations to MIC

transmission-line measurement has then been discussed.

Particular attention has been devoted to such details as

evaluation of the effects of dispersion, and the accuracy

of the method has been established via computer simulation.

Also, it has been shown that the measurement of even-

and odd-mode propagation constants in coupled micro-

strips can easily be reduced to a couple of independent

single-line measurements. The shape of the samples required

to perform the measurement this way (see Fig 11) is much

simpler than for previously described methods (e.g., [15]),

and a simple means of tuning the cavity without changing

the circuit configuration is always available. As a con-

sequence, measurements are much easier to be carried out

and give better-defined and more repeatable results.
Finally, measured and computed data have been com-

pared, and it has been shown that the quasi-TEM ap-

proximation (e.g., [14]) is reasonably adequate for

computing even- and odd-mode attenuation constants up

to 12 GHz.

APPENDIX

In this Appendix we show a procedure allowing the group

velocity of a transmission-line resonator to be experimentally

found [2]. Let the resonator be a short-circuited one and

O. its electrical length at resonance. Then from (20),

0. = (2K+ 1);. (Al)

Now if the resonator length is changed by a small (known)

amount Al, the resonance frequency is also shifted by a

corresponding amount Ao.),, but the electrical angle at

resonance remains unchanged since it must satisfy (Al).

On the other hand, we obviously have O. = flllo.o,, so that

differentiating (Al) yields

– ~ Acv~ + ES Al.— (A2)

V9
up

By means of (A2) the group velocity can be expressed as a

function of known quantities and measured data:

A(D 1
Vg= —vP—s —.

co, Al
(A3)

In this way the limitation pointed out by Pucel [4] maybe

overcome. In practice, two samples of the samle line having

slightly different lengths will be made and separately

measured. In the open-resonator case, 2K + 1 is replaced

by 2K in (Al) and the same argument applies.
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A Dual Mode Tuning Circuit for Microwave
Transistor Oscillators

ROBERT G. ROGERS, MEMBER, IEEE

Abstract—A two-port circuit adjusting botb even and odd mode fields,
with orthogonal mode adjustment, can be used as an embedding circuit
for a microwave transistor oscillator. The circuit, analyzed in TEM line,
may also be realized in any other form of transmission line geometry,

including two coexistent modes in a cavity. The resulting oscillator is
stable, has low FM noise, and is readily tunable. Analyses of the tuning

circait and oscillator are presented, along with some experimental
results and a discussion of methods using other than TEM transmission
lines to produce the even and odd modes.

I. INTRODUCTION

M
ICROWAVE transistors vary sufficiently in charac-

teristics between manufacturers and within a type
number that an effective oscillator is difficult to obtain

satisfying the stringent conditions usually imposed by

system requirements.

The transistor embedding circuit described here provides

a feedback circuit for a microwave transistor, giving high-

quality performance over a good bandwidth. The half-

wavelength series element in the tuning circuit serves as

the frequency-determining portion of the embedment, and

is effectively isolated from the active element, giving

frequency stability and low FM noise to the oscillator.

Manuscript received December 19, 1975; revised July 23, 1976.
The author is with GTE Lenknrt, Inc., San Carlos, CA 94070.

The two tuning adjustments of the embedment allow

relatively constant power output over a wide tuning range,

without further output tuning.

Even and odd mode fields are separately adjusted at the

transistor ports to give optimum conditions for oscillation.

These fields may be TEM, as presented here, or from

higher order modes in stripline, ‘rectangular, cylindrical, or

coaxial waveguide.

II. THE TUNING NETWORK

Fig. 1 shows the network, considered as air dielectric

microstrip above a ground plane, The length 11 extends
from the two ports to the short circuit acro’ss conductors;

12 continues from this short circuit to the grounding of

both conductors to the ground plane.

The TEM even and odd mode electric field distributions

at the ports are shown in Fig: 2. The short circuit between

conductors is odd mode; grounding of both conductors

also forms an odd mdde short but no odd mode field exists

on length 12. So the odd mode length is II and is adjusted

only by changing 11.

The even mode length is 11 + 1, but is adjusted only by

lz. With both modes existing at once, it can be seen from

Fig. 2 that since the field intensities at the two ports will


