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Resonance Measurement of Single- and Coupled-
Microstrip Propagation Constants

VITTORIO RIZZOLI

Abstract—The application of resonant techniques to the measurement
of microstrip-line propagation constants is described. A review of the
basic theory is given first, showing the great generality of the underlying
principle. Then the particular case of a transmission line is discussed and
it is shown that excellent theoretical accuracy can be achieved despite
the simplicity of the procedure and the mathematics involved. Both the
cases of nondispersive and dispersive propagation are covered. Finally,
it is shown that the basic method can be extended to the case of sym-
metrical coupled lines in a straightforward way. Some results concerning
practical microstrip lines are presented and compared with theoretical
data.

I. INTRODUCTION

ESONANT techniques are very popular among
R microwave engineers, as is shown by the considerable
number of papers dealing with this subject thal have been
reported in literature. Though originally devoted to wave-
guide measurement (see, for example, [1]-[3]), these
techniques have been successfully extended to the field of
microwave integrated circuits [4]-[7]. In the latter case,
many parameters of interest such as microstrip propagation
constants, attenuation factors, and discontinuity equivalent
circuits can be measured provided that resonators be suitably
shaped and excited. In fact, the wide range of application
seems to be one of the most attractive features of this kind
of technique, the others being measurement simplicity
and accuracy, easy automation, and insensitivity to such
classical inconveniences of microstrip measurements as
coaxial-to-microstrip transition effects.

This paper is concerned with propagation-constant
measurement on single- and coupled-microstrip lines (or
transmission lines in general). The theory of resonance
measurement on one-port networks is reviewed in Section
II in such a way that the extreme generality of the basic
concept is emphasized. In Section III the application to
measurement of single transmission-line propagation con-
stants is discussed with the twofold aim of establishing the
theoretical merits and limitations of the method and bring-
ing into sharper focus some aspects that have been only
partly covered so far. In Section IV it is shown that the
measurement of the normal (i.e., even and odd)-mode
propagation constants in a pair of symmetrical coupled
transmission lines can always be reduced to a couple of
independent single-transmission-line measurements, Inter-
actions between different but nearby resonances are avoided
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Fig. 1. Basic resonant configuration.

this way and both modes are measured with the same
absolute accuracy as obtained in the single-line case.
Finally, in Section V a few experimental results are presented
and compared with theoretical data in order to get a feeling
of the kind of accuracy that can be expected from currently
available analytical techniques in predicting microstrip
behavior.

In any case reference is made to shielded line resonators,
since this configuration has been shown [6] to be most
suitable for obtaining accurate and well defined measure-
ments and simply allows the even- and odd-mode resonances
in the coupled case to be produced separately [9].

II. RESONANCE MEASUREMENT OF ONE-PORT NETWORKS

The basic circuit configuration to be considered is shown
in Fig. 1. The lossy one-port network under test A4 is
coupled to the outside world by means of a lossless reciprocal
two-port €, and the reflection coeficient p of the resulting
one-port is measured with respect to some reference
impedance R (typically, the characteristic impedance of a
network-analyzer system). The reference impedance at the
inner port of the coupling network is denoted by Z,
(usually Z, # R). Let the normalized driving point ad-
mittance of 4 be denoted by

1 —p,
= —2"= 1
YL 1+ p, ¢y
and the scattering matrix of € by
Sy S
S = 11 12] . 2
[512 S22 @

Then, the expression for the input reflection coefficient is
given by the well-known formula

2
A
P=Su+ﬂ— )

1 - SzzPL'

By means of (1) and a few algebraic manipulations, (3)
can be given in the following form:

A—S11
o — ———
o = A+s11.A—i—s11 @)
1"‘S221+S22
Yo+ —=
1+ 55,
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where A = det S. Now, since (2) is the scattering matrix
of a loss-free network, from the conditions for absence of
loss we obtain

511 = uexp [—jo]
Sp2 = uexp [—jp]
512 = £ — 4 exp [—j W] )

where u,¢,/ are real numbers and 0 < u < 1. Note that
in this case we have A = exp [—j(¢ + ¥)], so that (4)
becomes

J’L—‘a“]’b .
==~ exp|jo 6
p = P ] ©)
with

1 — 42

a =
1 + u? + 2ucosy

_ —2u sin Y
1+ u? + 2ucosy
d=—¢ +y¢ — 2arctan—n-l/-/-—— @)
) u+cos¢'

Finally, if the real and imaginary parts of y, are put into
evidence, namely, y; = x + jy, (6) takes the form

ro+jt .
= 2L ex S 8
1+t p[2] ®)
where
X —a
Fo =
X+ a
ey ©9)
x+a

Equation (8) is the expression for the reflection coefficient
that will be referred to in the rest of the paper.

Let us now assume that the network % provides small
coupling between its input and output ports, that is,

1 -«

(10)

In the limiting case u = 1, (5) vields s,, = 0, so that
lp] = |s¢4} = 1 independent of frequency. Thus when (10)
holds, the magnitude of the input reflection coefficient will
generally be very close to 1, except in the vicinity of those
frequencies (if any) such that the following conditions be
satisfied:

tf« 1

jro|l « 1.

1n

In fact, (11) implies |p| < 1. These frequencies will be
referred to as resonant frequencies. Thus we may state that
one such frequency is characterized by a resonant dip
occurring in the magnitude-of-p-versus-frequency plot.
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The optimum theoretical case (usually not practically
realizable) is achieved when

t=0

ro =O.

(12)

In this case the network % is said to provide critical coupling.
To verify (12) or—from a more realistic standpoint—(11),
a degree of freedom should usually be available in the
circuit. Typically, this can be obtained by means of a

- coupling network containing at least one variable parameter.

If r, and 6 were constants, (8) would represent a circle on the
Smith chart, having its center at

1_% exp [J6]. (13)

Now in most practical cases it is found that the input -
reflection coefficient actually depicts a circle (or, at least, a
fraction of it) on the Smith chart in the vicinity of every
resonant frequency (see [ 7], [8]) provided that the reference
plane be properly chosen. Referring to (8), this means that
in the vicinity of a resonant frequency w, the rate of change
of roy and & with frequency is usually negligible if compared
to that of ¢z Thus for w near to w, from (8) we get the
following approximate expression:

p(a)) ~ ’jo(ws) +.]q(w - (Ds) exp []5} (14)
1+ jg(o — o)
where
ot
= = . 15
1 Jw =g ( )

In turn, (15) suggests the following expression for the loaded
Q of the resonant one-port [9]:

0, = L. (16)
2

Note that when (12) hold, Q, is the inverse of the
fractional 3-dB bandwidth so that by monitoring |p|
versus frequency on a CRT display Q; can easily be
measured. Of course, the resonant frequency w, can be
measured quite as easily, since a sharp minimum of |p|
occurs at this frequency. Thus (12) and (16) may be regarded
as a system of three equations which make it possible
to find up to three unknown parameters of the one-port
network under measurement. When the network topology.
is known a priori on a physical ground, the unknown
quantities may obviously be chosen as physically significant
ones. Otherwise, they are best chosen to be electrical
parameters of some lumped or distributed equivalent circuit.
An example of the former situation will be given in the
following section, where the case of a short-circuited

transmission line is worked out in some detail.

II1. PROPAGATION-CONSTANT MEASUREMENT
IN A TRANSMISSION LINE

Let the network A4~ (Fig. 1) be a short-circuited trans-
mission-line section of given length /. The line characteristic
impedance (which is the same as the output reference
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impedance) is denoted by Z, and the unknown propagation
constant by y = « + jB. If this is the case, the normalized
load admittance is given by y, = coth 9/, and

.= sinh 2a/
cosh 2al — cos 2p!
y— —sin 2f] . (17)

cosh 2al — cos 2f!

If an ideal admittance inverter of constant B, is used as the
coupling network €, then

_ 1 - BZR
1 + By2Z.R
p=y=0 (18)

so that an easily realizable condition for small coupling is
B,2Z,R « 1. Moreover, from (7) we get

a=B>Z.R <1
b=235=0. (19)

As a consequence, the condition ¢ = 0 is met at all fre-
quencies such that cos 28/ = +1. When the upper sign
holds, x = coth a/, which is usually much greater than 1
since all the transmission lines we are interested in are low-
loss. At these frequencies the magnitude of p is then nearly
equal to 1 and no resonance is found. Thus resonances
may only occur at frequencies such that the line length is
an odd multiple of a quarter of a wavelength, that is,

A, = " (2K + 1)-— (20)
where K is an integer and v, is the phase velocity of the
transmission line. At all frequencies defined by (20), the
input reflection coefficient is given by

_ tanh o — B2Z,R

tanh o + ByZ.R
and a resonant dip may actually occur provided that the
inverter constant By, is properly adjusted. This is the degree
of freedom required to perform the measurement in the
particular case being considered.

Finally, from (16) by means of (15), (9), and (17) the
following expression for the loaded cavity Q is derived:

v, (1 — tanh? a)(2K + D)n

plo)) = ro @n

=2r 22
L v, 4(tanh o/ + By>Z.R) @2)
where
b, = 22 23)
g 6ﬂ

is the group velocity of the transmission line. Equations
(20), (21), and (22) can be rearranged to obtain the fun-
damental equations for the measurement procedure:

v 2wy
»T 2K + Dn
tanhod = V(Y2 + 1) = Y 24).
_ 2
B2ZR = Lo b
1+ roY
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Fig. 2. Inverter-fed transmission-line resonant cavity.
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Fig. 3. Equivalent circuit of general lossless two-port.

. where

- ”y 40

@25)
, 2K + Dr(l + ro)

In (24), Q;, w, and r, must be regarded as known
quantities.! The network topology for this case is schemat-
ically shown in Fig. 2.

At this stage, two different cases may arise. When
propagation in the line is nondispersive, then v, = v,
and (24) yield the phase velocity and attenuation constant
of the line without further complication. When dispersion
may not be neglected, further information is required to
find the group velocity. This can be obtained on a purely
experimental basis following the procedure outlined in the
Appendix.

Now consider the two-port network represented in Fig. 3,
made of two lossless transmission-line sections and an ideal
admittance inverter. It is well known that this network can
be used as an equivalent circuit for any loss-free two-port
at a given frequency. Consequently, in the vicinity of
every resonant frequency the real network may be de-
scribed by the ideal topology of Fig. 2% no matter what the
physical structure of the coupling network, provided that the
following conditions are fulfilled:

1) the coupling network is practically loss free;

2) the output electrical length of the coupling network is
negligible with respect to the electrical length of the
line resonator.

Note that the input electrical length of the coupling net-
work is of no interest here, since its effect can be easily
compensated for by a reference plane shift.

Thus the fundamental equations for the ideal case may be
used in the real situation as well, the only approximations
involved being specified by conditions 1) and 2) above. In
particular, it is expected that the relative error on v, will
be of the order of

, _
QK + Dn’ (26)

1 Note that (24) may be used even when |r,| is nonnegligible with
respect to unity. In this case the loaded Q is defined as the ratio
ws/Aw, where Aw is the difference between the two frequencies yielding
]pl2 = 1(1 + r¢2)/2. The latter reduces to the 3-dB bandwidth if
ro <

2 At least, this is true within the 3-dB bandwidth, which is usually
very narrow (typically a few percent).
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Fig. 4. Example of microstrip-cavity excitation.

Fig. 5. Equivalent circuit of coupling network.

A very simple practical realization of the coupling
network—in fact, the one that was used to perform the
measurements presented in this paper—is schematically
shown in Fig. 4. The network essentially consists of an air
gap separating the output tab of an APC-7 RF connector
and the input section of the microstrip line. The coupling
can be made as small as needed by varying the gap. It is
evident on a physical ground that this kind of network
can be described by an equivalent circuit consisting of a
purely capacitive n-network as shown in Fig. 5. C; and C,
approximately account for the end effects of the coaxial
and microstrip lines.

Since a number of approximations are involved in the
above procedure, it is advisable to get some sort of feeling
of the overall theoretical accuracy that can be expected
from it. To this end, computer simulations were performed
in a number of particular cases.

The way a simulation works is as follows. An analytical
model of the microstrip resonator is assumed first, including
dispersion [10], frequency-dependent losses and parasitics.
All of these effects are taken into account by simple equa-
tions based on well-known theoretical or experimental data.
Reasonable values are then chosen for €, and C, in a
similar way [11]. At this stage, a value of K (order of
resonance) is fixed and the corresponding resonance
frequency and critical coupling capacitance are found by
numerically solving (12). The resulting one-port is then
analyzed and the magnitude of the reflection coefficient is
plotted as a function of frequency. Finally, this plot is used
(in much the same way as if it was the trace on a CRT
display) to find the line propagation constant by the method
previously described and the results are compared with the
known true values.

Based on the data obtained this way, we can state that the
theoretical accuracy of the method is higher than 2.5 percent
in all cases of practical interest for a 5-cm-long resonator
within the band 1:18 GHz.

Dispersion must be taken into account as approaching
the upper end of this band. Increasing the resonator length
usually increases both the accuracy on v, and the etror on «.

The case of an open-end resonator can be treated in a very
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Fig. 6. Schematic of even-mode cavity.

similar way. The fundamental equations (24), (25) still
hold, provided that the factor (2K + 1) is replaced by 2K.
In this case the end effect of the microstrip line should be
taken into account in evaluating the phase velocity. How-
ever, for resonator lengths over 5 cm this effect is usually
less than a few units per thousand.

Finally, note that the effect of any circuit losses other
than the ones to be measured can easily be accounted for
by shifting the vertical position of the beam on the CRT
display in such a way that the out-of-resonance condition
[p| =~ 1 is restored. Then the measurement may be carried
out in the way discussed so far without further complication.

IV. RESONANCE MEASUREMENT OF EVEN- AND ODD-
MODE PROPAGATION CONSTANTS IN COUPLED MICROSTRIPS

The method outlined in the preceding sections, which is
suitable for single-transmission-line measurement, can be
used in the case of symmetrical coupled microstrips to
find the even- and odd-mode propagation constants. The
approach consists of feeding and loading a section of the
two-wire line to be measured in such a way that separate
resonant cavities for the even and odd mode be obtained.
The even- and odd-mode voltages and currents are defined
by the well-known relationships

VEle;Vz Vo=u
2 2
I + I I — I
o =211 "2 I, =1 2 27
E 5 0 3 27)

An even-mode resonant cavity can very easily be ob-
tained by connecting in parallel the strips at both ends of
the coupled section as shown in Fig. 6. In this way we
force the odd-mode voltage to be zero in both the input
and load sections of the two-wire line. Since the modes
are uncoupled in all other sections, the odd mode is not
excited at all. As a consequence, a transmission-line
resonator is obtained having the even-mode propagation
constant y; and half the even-mode characteristic im-
pedance. The input coupling network is realized as shown
in Fig. 4 and an open-end configuration is chosen to
simplify construction. The resonator is enclosed in a
rectangular waveguide below cutoff in order to eliminate
any radiation effects.

To obtain an odd-mode resonant cavity, let us first
consider the electrical situation depicted in Fig. 7. The strips
are connected in parallel at the input side, and separately
loaded by the admittances Y;,Y,. This time the RF con-
nector is soldered to the center conductor, so that no input
admittance inverter exists. As shown in [9], the equivalent
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Fig. 7. Schematic of odd-mode cavity.

circuit of Fig. 7 in terms of even- and odd-mode lines is
the one given in Fig. 8. The two-port labeled ¥, becomes
an ideal admittance inverter of constant B, « 1 provided
that

Y, = —jBy

Y, = jBo (28)

where B, is a small real number.

Due to the presence of a cascade section of the even-
mode line, the electrical situation of Fig. 8 is somewhat
more complicated than assumed in Section ITI, and must
be carefully examined.

What we would need in order to perform the measure-
ment as described above is the reflection coefficient of the
odd-mode resonator with respect to the even-mode charac-
teristic impedance (this is denoted by p in Fig. 7). On the
other hand, what we are able to measure from the circuit
of Fig. 7 is

Z., — R

= 29
Zin + R @)

Pin =

[SEREeT

where R is the reference impedance and Z;, is given by

Zin — ZE 1 + p €Xp [_ZYEl]
1 — pexp[—2y:]

[ being the length of the coupled section.?

Now since the loaded Q of the cavity is usually high, and
we are essentially interested in the circuit behavior within
the narrow 3-dB bandwidth, the change of the factor y./
with frequency throughout this band may be neglected.
Moreover, since the even mode is generally low loss (see
Section V), the attenuation factor may be neglected, too,
or simply accounted for as was said at the end of Section I1I.
Thus the cascade even-mode line acts in much the same
way as an ideal phase shifter in the frequency band of
interest. If this is the case, it can be shown that a straight-
forward application of (24) to the measured reflection

(30)

3 In principle, a very simple way of exactly solving the problem
would be to make R = Zz/2 by inserting an impedance-matching
network between the microstrip circuit and the output connector of
the network-analyzer system. In fact, in this case from (29) and (30),
we get

pin = p exp [—2ygl]

so that p can be derived from the measured data, since yg is known.
This approach, however, turns out to be unpractical because it re-
quires an independent determination of the even-mode characteristic
impedance and can be greatly perturbed by the imperfect behavior of
the matching network.
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coeflicient p;, (see Fig. 7) yields the correct value of the odd-
mode propagation constant in spite of the impedance step
occurring in the input section of the microstrip circuit.
The approximation error involved is typically 1 percent or
less in cases of practical interest. The proof of this state-
ment is not given here for the sake of brevity.

The only problem left is how to obtain the practical
realization of (28). An intuitive solution can readily be
found if we note that a small positive susceptance can be
made by a short (< A/4) open-end transmission-line
section, while a small negative susceptance could be made
by a similar transmission-line section of megative length.
Thus all we need [9] is to lengthen one of the strips and
shorten the other by the same amount A/, The resulting
circuit configuration is schematically shown in Fig. 9. The
inverter constant is given by

Bo = Yo tan BoAl, (31)

where Y, and B, are the characteristic admittance and
phase constant of the open-circuited stub loading line 2.
In principle, the inverter constant can be adjusted by
changing the length Al so that the required degree of
freedom is available.

Upon careful examination of the circuit in Fig. 9, it
becomes evident that the above intuitive argument is only
approximate. An exact equivalent circuit is actually given
by Fig. 8, where / must be replaced by / — A/ and the
coupling network has the same topology as shown in Fig. 5.
This time the equal capacitances C; = C, account for the
microstrip open-circuit effect, while the coupling capacitance
C, has the expression

CA == YoAl 'ﬁ—o.

s

(32)
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Fig. 10. Fine tuning of odd-mode cavity.

Fig. 11. Picture of even- and odd-mode cavities.

Thus the electrical situation and the éxpected accuracy are
the same as that discussed in Section III for the single-line
case. o :

Finally, note that, in order to practically perform th
measurement, a fine tune of the inverter constant can be
realized as shown in Fig. 10. As in th¢ previous case, the
resonator is enclosed in a rectangular waveguide below
cutoff, but now a step is etched in the shorting block de-
limiting the waveguide cavity. The Iength of this step is the
same as for the stub loading line 2, and the height is such
that a very small air gap (=~ 0.1 mm) is left between the
strip conductor and the block itself. Thus changing the
axial position of the shorting block is-equivalent to modify-
ing the load capacitance of line 2, that is, the inverter
constant. '

V. EXPERIMENTAL RESULTS

In this section we present a few experimental results
that were obtained by the above procedure from the micro-
strip lines shown in Fig. 11. These were made by thin-
film technique on 99.5-percent alumina substrate (g, =
10.6) and had the following geometry:

strip width 0.5 mm
strip spacing, 0.1 mm
substrate thickness 0.635 mm

The metal film was made of a 500-A layer of NiCr.plus
a 1200-A layer of gold (dc resistivity 2.7 uQ - cm). The
latter was electrolytically grown to about 3 um. The lengths
of the even- and odd-mode resonators were 5 and 4.3 c¢m,
respectively. Three samples of each resonator were made
from the same mask. Fig. 12 is a picture of the jig used to
perform the measurement. Also shown in the same figure is
the stepped short-circuiting block that was used in the odd-
mode case.
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Fig. 12. Picture of jig used to perform measuremients.
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Fig. 13. Sample experimental reshlts. .

The measured performances of both the even and odd
mode for all samples are reported altogether in Fig. 13.
For each resonant frequency, an interval rather than a single
measured point is given in the figure owing to the following
reasons: '

1) the attenuation constants are not exactly the same for
the different resonators considered;

2) for each resonator there exists an uncertainty on the
value of the loaded Q, arising from the irregular
shape of the observed resonant dip.

On the other hand, practically o change of the resonant .
frequencies was found from one resonator to another.
As is evident from the figure, measurement definition is
good, the maximum uncertainty being about +6 percent
both for the even and odd mode. The continuous curves
were obtained by interpolating the midpoints of the un-
certainty intervals in the least square sense. The inter-
polating function was chosen as

o = Af*
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and the following values were found:

A4 = 0.027

even mode
x = 0.615
A = 0.066

odd mode
x = 0.546

where o« is given in decibels per centimeter. Note that in
both cases the exponent is higher than the theoretical
0.5, probably due to the effect of surface roughness [13].

Also shown in the figure are the results of loss computa-
tion for the same two-strip system (dashed lines). These
may be expressed as

o = 0.0234\/}r even mode

o« = 0.0688vf  odd mode

where fis in gigahertz and the 1-GHz values were calculated
by the quasi-TEM analysis of [14]. In each case the agree-
ment is good at low frequencies, but deteriorates as fre-
quency is increased, due to the exponent difference. The
accuracy of the theoretical results is definitely better for the
odd than for the even mode, but no simple explanation was
found for this fact. Note that the calculations were per-
formed for smooth strips and substrates; the agreement
between theory and experiment could obviously be improved
by including a roughness factor as in [4].

From Fig. 13 the resonant frequencies are also apparent,
so that the even- and odd-mode phase velocities can be
computed. For the even mode a slight dispersion effect is
observed, since the phase velocity steadily decreases from
1.12 x 10® m/s (at 2 GHz) to 1.08 x 10® m/s (at 12 GHz).
For the odd mode, dispersion is insignificant over the
frequency range considered here, and the phase velocity
has a practically constant value of 1.24 x 10® m/s. These
results are consistent with those reported in [15].

For comparison, the velocity values obtained from the
variational analysis of [16] for the same strip dimensions
and zero thickness are

v, = 1.103 x 10% m/s
v, = 1.241 x 10° m/s

even mode
odd mode.

The maximum error of the quasi-TEM analysis on the even-
mode velocity is about 2 percent below 12 GHz, while the
odd-mode velocity is evaluated exactly.

Thus the quasi-TEM analysis seems adequate for charac-
terizing the even and odd modes of symmetrical coupled
microstrip lines up to 12 GHz, both for propagation
velocity and losses. This conclusion was further checked
by a number of measurements performed on rexolite
resonators by the same technique described above. In all
cases the results were qualitatively similar to those reported
in the present section.

VI. CoNcLUSION

In the present paper the theory of resonance measure-
ments on lossy one-port networks has been formalized and
presented in a general and self-contained form, independent
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of the physical nature of the particular circuit being con-
sidered. The basic equations to be used when measuring
transmission-line propagation constants have been shown
to be a simple and natural consequence of the general ones,
for the special case of a network consisting of a short- or
open-circuited transmission-line section.

Application of the general considerations to MIC
transmission-line measurement has then been discussed.
Particular attention has been devoted to such details as
evaluation of the effects of dispersion, and the accuracy
of the method has been established via computer simulation.
Also, it has been shown that the measurement of even-
and odd-mode propagation constants in coupled micro-
strips can easily be reduced to a couple of independent
single-line measurements. The shape of the samples required
to perform the measurement this way (see Fig. 11) is much
simpler than for previously described methods (e.g., [15]),
and a simple means of tuning the cavity without changing
the circuit configuration is always available. As a con-
sequence, measurements are much easier to be carried out
and give better-defined and more repeatable results.

Finally, measured and computed data have been com-
pared, and it has been shown that the quasi-TEM ap-
proximation (e.g., [14]) is reasonably adequate for
computing even- and odd-mode attenuation constants up
to 12 GHz.

APPENDIX

In this Appendix we show a procedure allowing the group
velocity of a transmission-line resonator to be experimentally
found [2]. Let the resonator be a short-circuited one and
0, its electrical length at resonance. Then from (20),

0, = 2K + 1) g (A1)

Now if the resonator length is changed by a small (known)
amount A/, the resonance frequency is also shifted by a
corresponding amount Aw,, but the electrical angle at
resonance remains unchanged since it must satisfy (Al).

On the other hand, we obviously have 6, = l|,_,,,, so that
differentiating (A1) yields ’

0=2a0, =18 Ao, +B8] Al
dC!J 0= 0=
— L Aw, + AL (A2)
Ug UP

By means of (A2) the group velocity can be expressed as a
function of known quantities and measured data:

Ao, 1
P w, Al

= -0

(A3)
In this way the limitation pointed out by Pucel [4] may be
overcome. In practice, two samples of the same line having
slightly different lengths will be made and separately

measured. In the open-resonator case, 2K + 1 is replaced
by 2K in (A1) and the same argument applies.
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A Dual Mode Tuning Circuit for Microwave
Transistor Oscillators

ROBERT G. ROGERS, MEMBER, IEEE

Abstract—A two-port circuit adjusting both even and odd mode ficlds,
with orthogonal mode adjustment, can be used as an embedding circuit

_ for a microwave transistor oscillator. The circuit, analyzed in TEM line,
may also be realized in any other form of transmission line geometry,

including two coexistent modes in a cavity. The resulting oscillator is

stable, has low FM noise, and is readily tunable. Analyses of the tuning
circuif and oscillator are presented, along with some experimental
results and a discussion of methods using other than TEM transmission
lines to produce the even and odd modes.

I. INTRODUCTION

ICROWAVE transistors vary sufficiently in charac-
M teristics between manufacturers and within a type
number that an effective oscillator is difficult to obtain
satisfying the stringent conditions usually imposed by
system requirements.

The transistor embedding circuit described here provides
a feedback circuit for a microwave transistor, giving high-
quality performance over a good bandwidth. The half-
wavelength series element in the tuning circuit serves as
the frequency-determining portion of the embedment, and
is effectively isolated from the active element, giving
frequency stability and low FM noise to the oscillator.

Manuscript received December 19, 1975; revised July 23, 1976.
The author is with GTE Lenkurt, Inc., San Carlos, CA 94070.

The two tuning adjustments of the embedment allow
relatively constant power output over a wide tuning range,
without further output tuning.

Even and odd mode fields are separately adjusted at the
transistor ports to give optimum conditions for oscillation.
These fields may be TEM, as presented here, or from
higher order modes in stripline, rectangular, cylindrical, or
coaxial waveguide.

II. THE TUNING NETWORK

Fig. 1 shows the network, considered as air dielectric
microstrip above a ground plane. The length /; extends
from the two ports to the short circuit across conductors;
[/, continues from this short circuit to the grounding of
both conductors to the ground plane.

The TEM even and odd mode electric field distributions
at the ports are shown in Fig. 2. The short circuit between
conductors is odd: mode; grounding of both conductors
also forms an odd mode short but no odd mode field exists
on length /,. So the odd mode length is /; and is adjusted
only by changing /,.

The even mode length is /; + [, but is adjusted only by
1,. With both modes existing at once, it can be seen from
Fig. 2 that since the field intensities at the two ports will



